8 (812) 320-06-69

Каталог

Категории
Высшее образование (16+) (44671)
Высшее образование
Естественные науки (2770)
Естественные науки
Общественные науки (3854)
Общественные науки
Информатика и компьютерные технологии (4975)
Информатика и компьютерные технологии
Инженерное дело (1487)
Инженерное дело
Телекоммуникации, электроника, электротехника и радиотехника (1412)
Телекоммуникации, электроника, электротехника и радиотехника
Строительство. Архитектура (819)
Строительство. Архитектура
Строительство. Архитектура. Журналы (17)
Строительство. Архитектура. Журналы
Бетон и железобетон (3)
Бетон и железобетон
Жилищное строительство (7)
Жилищное строительство
Строительные материалы (7)
Строительные материалы
Юридические науки.Право (4557)
Юридические науки.Право
Отрасли права (2870)
Отрасли права
Гуманитарные науки (6444)
Гуманитарные науки
Иностранные языки (2420)
Иностранные языки
Экономика. Экономические науки (7774)
Экономика. Экономические науки
Образование. Педагогические науки (4112)
Образование. Педагогические науки
Медицина и здравоохранение (993)
Медицина и здравоохранение
Физическая культура и спорт (510)
Физическая культура и спорт
Среднее профессиональное образование (14+) (3312)
Среднее профессиональное образование
Коллекции (48316)
Коллекции
Издательские коллекции (47897)
Издательские коллекции
Журналы (1146)
Журналы
Остаться в выбранном разделе
Назад к каталогу

Анализ больших наборов данных / пер. с англ. А. А. Слинкина. — 2-е изд., эл.

Анализ больших наборов данных / пер. с англ. А. А. Слинкина. — 2-е изд., эл. ISBN 978-5-89818-304-2
ISBN 978-5-89818-304-2
Авторы: 
Ульман Дж. Д., Лесковец Ю., Раджараман А.
Тип издания: 
Практическое издание
Издательство: 
Москва: ДМК Пресс
Год: 
2023
Количество страниц: 
500
Аннотация

Эта книга написана ведущими специалистами в области технологий баз данных и веба. Благодаря популярности интернет-торговли появилось много чрезвычайно объемных баз данных, для извлечения информации из которых нужно применять методы добычи данных (data mining). В книге описываются алгоритмы, которые реально использовались для решения важнейших задач добычи данных и могут быть с успехом применены даже к очень большим наборам данных. Изложение начинается с рассмотрения технологии MapReduce — важного средства распараллеливания алгоритмов. Излагаются алгоритмы хэширования с учетом близости и потоковой обработки данных, которые поступают слишком быстро для тщательного анализа. В последующих главах рассматривается идея показателя PageRank, нахождение частых предметных наборов и кластеризация. Во второе издание включен дополнительный материал о социальных сетях, машинном обучении и понижении размерности.
Издание будет в равной мере полезна студентам и программистам-практикам.

Библиографическое описание Скопировать библиографическое описание

Ульман Дж. Д. Анализ больших наборов данных / пер. с англ. А. А. Слинкина. — 2-е изд., эл. / Ю. Лесковец, А. Раджараман. - Москва : ДМК Пресс, 2023. - 500 с. - ISBN 978-5-89818-304-2. - URL: http://new.ibooks.ru/bookshelf/392004/reading (дата обращения: 19.07.2025). - Текст: электронный.